If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+12x-435.25=0
a = 4; b = 12; c = -435.25;
Δ = b2-4ac
Δ = 122-4·4·(-435.25)
Δ = 7108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7108}=\sqrt{4*1777}=\sqrt{4}*\sqrt{1777}=2\sqrt{1777}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{1777}}{2*4}=\frac{-12-2\sqrt{1777}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{1777}}{2*4}=\frac{-12+2\sqrt{1777}}{8} $
| 2s/3=s/4 | | 3(3t-2)=4(7t-1) | | (2i)=(8i) | | -8x-9=5x+17 | | 0.8x+0.3=2.7 | | 5n=6n+40 | | 11x-15=18-(3-10x) | | X+x+7(7+2)=36 | | -4s=28 | | 2.5=6.4+y | | 11x-15=15-10x | | -9=b/3 | | x+x*0.2=6241 | | 460*x=48 | | -8=-7+y | | 54-4x=-10x | | 7(7x+1)=-5(3x-5) | | n-12=2n+7 | | 5/26p+2=1/5p | | 2/11y+6/7=1/11y+5/3 | | -15g=195 | | 1.3c=1/4 | | 4(5h+2)=25 | | 14/15c+1/5c=1/4 | | 22=-8+6(s-2) | | 9+x-7=15 | | -3p=-69 | | -6+5(1+2n)=29 | | 6x+4=3x+113+2 | | A=a^2+24a | | 48-3x=27x | | -11=d-3 |